
AD-A269 182

A Simplified Account of Polymorphic References

Robert HarperDTI C June, 1993
ELECTE D CMU-CS-93-169

SEP071993

A
School of Computer Science
Carnegie Mellon University

Pittsburgh. PA 15213

Abstract

A proof of the soundness of Tofte's imperative type discipline with respect to a structured operational
semantics is given. The presentation is based on a semantic formalism that combines the benefits of the
approaches considered by Wright and Felleisen, and by Tofte, leading to a particularly simple proof of
soundness of Tofte's type discipline. I

Thi. 10''curnin has been approved
-r pE -o, , sa, , tse 93-20593

This research was sponsored by the Defense Advanced Research Projects Agency, CSTO, under the title "The Fox 0
Project: Advanced Development of Systems Software", ARPA Order No. 8313, issued by ESD/AVS under Contract
No. F19628-91-C-0168.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the
V.S. Government.

9,o 3

S S 5 0 0 0 0 0 .'.6

• lm 11,11m lmt~l ll+ • • in mlnmll lll lm lluII 0l

1 Introduction

The extension of Damas and Milner's polymorphic type system for pure functional programs [2] to accomo-
date mutable cells has proved to be problematic. The naive extension of the pure language with operations

to allocate a cell, and to retrieve and modify its contents is unsound [11]. The problem has received consid-
erable attention, notably by Damas [3], Tofte [10, 11], and Leroy and Weiss [71. Tofte's solution is based on

a greatest fixed point construction to define the semantic typing relation [11] (see also [8]). This method has
been subsequently used by Leroy and Weiss [7] and Talpin and Jouvelot [9]. It was subsequently noted by

Wright and Felleisen [13] that the proof of soundness can be substantially simplified if the argument is made

by induction on the length of an execution sequence, rather than on the structure of the typing derivation.
Using this method they establish the soundness of a restriction of the language to require that let-bound

expressions be values. In this note we present an alternative proof of the soundness of Tofte's imperative type

discipline using a semantic framework that is intermediate between that of Wright and Felleisen and that of
Tofte. The formalism considered admits a very simple and intuitively appealing proof of the soundness of

Tofte's type discipline, and may be of some use in subsequent studies of this and related problems.

2 A Language with Mutable Data Structures

The syntax of our illustrative language is given by the following grammar:

expressions e :: Ill unit Irefe Iel :=e, !e I AX.e I F1 t._ 1let rbe in f2
ralues I : I I unit I Ax.e

The meta-variable x ranges over a countably infinite set of rariables. and the rneta-variable I ranges over
a countably infinite set of locations. In the above grammar unit is a constant, ref and ! are one-arginient
primitive operations. and := is a two-argument primitive operation. Capture-avoiding substitution of a value

r for a free variable x in an expression e is written [v/.re.
The syntax of type expressions is given by the following grammar:

monotypes r :: t]unitI r ref I T- -r,

polytypes a ::= Vt.ir

The meta-variable t ranges over a countably infinite set of type variables. The symbol unit is a (list inguished
base type. and types of the form rref stand for the type of references to values of type r. The set FTX'(7)
of type variables occurring freely in a polytype a is defined as usual, as is the operation of capture-avoiding
substitution of a monotype r for free occurrences of a type variable t in a polytype 7. written fr/tjtr.

A tvartable typing is a function mapping a finite set of variables to polytypes. The ineta-variable ,. ranges
over variable typings. The polytype assigned to a variable x in a variable typing I is •,(x). andlI the variable
typing kt[.:if] is defined so that the variable r is assigned the polytype fr. and a variable x' 0 xr is assigned

the polytype -y(x'). The set of type variables occuring freely in a variable typing ý. written F'[\(-,). is
defined to be UzCdom-6jI FTV(7(x)). A location typing is a function mapping a finite set of locations to
monotypes. The meta-variable A ranges over location typings. Notational conventions similar to those for
variable typings are used for location typings. .1

Polymorphic type assignment is defined by a set of rules for deriving judgements of the form A: • I- (:
with the intended meaning that the expression e has type rt under the assumption that the locations in

e have the monotypes ascribed by A. and the free variables in c have the polytypes ascribed by ". Th[l
rules of inference are given in Table 1. These rules make use of two auxiliary notions. The polyinorphic
instance relation a > r is defined to hold iff a is a polytype of the form VtI Vt,.r' and r i.3 a monotype

of the form fri_. , tjr', where r, rt, are monotypes. This relation is extended to polytypes

by defining & > a' iff a > r whenever a' > r. The polymorphic generalization of a monotype r relative
to a location typing A and variable typing -y, Close.,%,(r), is the polytype Vt1 Vt,.r, where FTV(r) \
(FTV(A)UFTV(y)) = {tt- -In). Asa notational convenience, we sometimes write A l- e : rfor A,;- r : r
and Close(\(r) for CloseA,o(r).

The following lemma summarizes some important properties of the type system:

S S 0S 0 ,.

S

II

S

A; -z : r (,y(z) > r) (VAR)

A;- I : rref (A(I) = r) (LOC)

A; - F- unit unit (TRIV)

e; 7
R- F

A;7 I- refe rref

A; -F- e1 :rref A;7-Y e 2 :r (ASSIGN) '

A;Iv F- e :=e) : unit

A;7 I- e rref (RETRIE':E)

[x: r -e :r,
(x • dom(y)) (ABS)

A: •- A z.e : -rj

A; F- e I : r 2-" Ar y -e 2 : (APP)

A;y F- eI e2 : r

A;y • Ie :r A; -7[x: Close\;.(ri)] h- e2 (: r(E (,r •dom(yt)) (LET)
A;y F- let xbeeI ine 2 : r2

Table 1: Polymorphic Type Assignment

2

,5)
S

p H- v * v,, (VAL)

1fA dom(p')) (ALLOC)
- ref e =>1, il• i:=]

p I- !e A p'(1)p' (CONTENTS)

p - el =:> lp pl I e2 * v4,, 2(TPDAFE)

p H- el e 2 => unit, p2[1:=t']

pH el Ax.e'1,p1 Al l'-e2 V2002 P2 l' [V2 /x]e, =ý vp 1 (APLY

p H- el e2 = v,#I
(APPLY)

p H- e 1 =:: vl,pi 1 i H [vh/. X]e2 = 2 (BIND)

p I- letx bee, ine 2 => I"- M.

Table 2: Operational Semantics for References

Lemma 2.1

1. (Weakening) Suppo.se that A; ý I- e : r. ff I (dom(A). then A[1:7]: I- 1 r. and if x 4 dom(-7). thr,
A:-l~r -e:T. b 0

2. (Substitution) If A:•-- : r and A: 7[.r:ef] H e' :r'. and if(loseA.,(r) > (. thele A; H [-/xe', : r'

1. (Specialization) If A;-y -c : r and Close,\.,(r) > r'. the A;7 - e : r'.

The proofs are routine inductions on the structure of typing derivations. Suibstitution is stated only for valuies.
in recognition of the fact that. in a call-by-value language only values are ever substituted for variables during
evaluation.

3 Semantics and Soundness

A memory p is a partial function mapping a finite set of locations to values. T'he contrndt. of a location
I E dom(p) is the value p(l), and we write p[l:=r] for the memory which assigns to location I lie value r
and to a location 1' 6 1 the value p(/'). Notice that the result niay either be an updatc of p (if I E loni(ji))
or an extension of p (if I ý dom(p)).

The operational semantics of the language is defined by a collection of rules for dleriving juidgiuients of
the form p H- e =* v, p', with the intended meaning that the closed expression r, when evaluated in ienuory
jp, results in value v and memory p'. The rules of the semantics are given in Table 2.

The typing relation is extended to memories and location typings by defining ip : A to hold iff doni(p) =
dom(A), and for every I E domr(p), A H- I : A(l). Notice that the typing relation is defined so that P(l)
may mention locations whose type is defined by A. (Compare Tofte's account [11].) For exaniple. suppose
that p is the memory sending location lo to Ax.r + 1, and location I1 to Ay.(!lo)y + 1, and suppose that
A is the location typing assigning the type int-int to both to and I1. The verification that p : A requires
checking that A H- Ay.(! 1o)y + 1 : int-int, which requires determining the type assigned to location 10 by A.
As pointed out by Tofte [11], the memory p' which assigns p(il) to both 10 and 1i can arise as a result of
an assignment statement. To verify that u' : A requires checking that A H- p(lo) : A(/0), which itself relies
on A(Io)! Tofte employs a "greatest fixed point" construction to account 'for this possibility, but no such
machinery is needed here. This is the principal advantage of our formalism. (A similar advantage accrues
to Wright and Felleisen's approach (131 and was suggested to us by them.)

We now turn to the question of soundness of the type system.

3

0 S 0 S S 0 0 '' 0 "O'

Conjecture 3.1 If t- e v,p', and A I- e : r. with p A, then there ezasts A' such that A C A'. p' : A'.
and A' F- v : r.

The intention is to capture the preservation of typing under evaluation, taking account of the fact that
evaluation may allocate storage, and hence introduce "new" locations that are not governed by the initial
location typing A. Thus the location typing A' is to be constructed as a function of the evaluation of e, as
will become apparent in the sequel.

A proof by induction on the structure of the derivation ofp l- e =* v, p' goes through for all cases but BIND.
For example, consider the expression ref e. We have p I- ref e 1 I, M'[I:=v] by ALLOC, A I- ref e : rref by REF.

and p : A. It follows from the definition of ALLOC that p F- e => t,,p'4 and from the definition of REF
that A - e : r. So by induction there is a location typing A' D A such that p' : A' and A' F- r : r. To
complete the proof we need only check that the location typing A" = A'[l:=r] satisfies the conditions that
u'[i:=v] : A" and that A" F- I : rref, both of which follow from the assumptions and Lemma 2.1(1). The
other cases follow a similar pattern, with the exception of rule BIND. To see where the proof breaks down.
let us consider the obvious attempt to carry it through. Our assumption is that p F- let x be e1 in e, > v. p'
by BIND, A F- let x bee, ine 2 : r2 by LET, and pA : A. It follows that p F- el => vi,pt for some value v, and
some memory Pu1, and that pi F- [v/lx]e2 =: v,p'. We also have that A F- el : r, for some monotype rl.
and that A:z:CloseA(rl) F- e, r, for some monotype r,. By induction there is a location typing A, D A
such that Pl : A1 and A1 I- v' rl. To complete the proof it suffices to show that A1 F- [vI//x]c : n... This
would follow from the typing assumptions governing vt and e2 by an application of Lemma 2.1(2). provided
that we could show that CloseA, (rl) > CloseA(r,). But this holds iff FTV(A,) C FTV(A). which (foes not
necessarily obtain. For example. if el = ref (Ax.x) and r, haus the form (t-t) ref. where / does not occur in
A. then CloseA(rl) generalizes t, whereas ('loseA,(r,) does not. (This observation is due to Foite. who also
goes on to provide a counterexample to the theorem [I l].)

The simplest approach to recovering soundness is to preclude polymorphic generalization on lit,' type ,,f 0
a let-bound expression unless that expression is a value. Under this restriction the proof goes through, for
we can readily see that ifp F- v = r p', then r' = v and it' = it. and that if p : A and p : A,. with A1 _ A.
then A1 = A. Consequently. (Close),(rl) = ('losex(r|) in the above proof sketch, and this is sufficient to
complete the proof. Following Tofte [11], we deem an expression c non-expansivc iff p iF- f ::€ '. p indlies
p' = p. By restricting the BIND rule so that el is non-expansive, we ensure that A, = A, which suffices for
the proof. Unfortunately in any interesting language this condition is recursively undecidable, and henceI
some conservative approximation must be used. Tofte chooses the simple and memorable condition that ii

be a (syntactic) value.
The requirement that polymorphic let's bind values is rather restrictive. Following ideas of .MacQueen

(unpublished) and Damas [3]. Tofte introduced a modification to the type system that admits a more
flexible use of polymorphism. without sacrificing soundness. Tofte's idea is to employ a marking of type
variables so as to maintain the invariant that if a type variable can occur in the type of a location in the
store, then generalization on that type variable is suppressed. The set. of type variables is divided into two
countably infinite disjoint subsets, the imperative and the applicative type variables. A monotype is called
imperathve iff all type variables occurring within it are imperative. The typing rule for ref is constrained
so that the type r of e in rule REF is required to be imperative. Polymorphic generalization must preserve
the imperative/applicative distinction, and polymorphic instantiation is defined so that an imperative type
variable may only be instantiated to an imperative monotype. In addition a restricted form of generalization.
written AppClose•. (r), is defined similarly to CloseA.,(r), with the exception that only applicative type
variables are generalized in the result: any imperative type variables remain free.

With the machinery of applicative and imperative types in hand. Tofte replaces the RINI) rule with the
following two rules:

A;: l- vt : r, A;-[z:Close.\,,(rtl)J F- e2 :2 (x 0 dom(y)) (BIND-VAL) I

A;-y - let xbe v, ine2 : r2

A;' P, r, A :[z: AppClose ,,(ru)] e l` P2 r2 (z i dom ('y)) (BIND-ORD)

A; F-- let zbeeI inP 2 :r2

4

0~ 0 0 0"@

Thus if the let-bound expression is a value, it may be used polymorphically without restriction: otherwise
only the applicative type variables may be generalized.

The idea behind these modifications is to maintain a conservative approximation to the set. of type
variables that may occur in the type of a value stored in memory. This is achieved by ensuring that if a type
variable occurs freely in the memory, then it is imperative. The converse cannot, of course, be effectively
maintained since the location typing in the soundness theorem is computed as a function of the evaluation.
trace. We say that a location typing is imperative iff the type assigned to every location is imperative.

Theorem 3.2 Ifu F - e = e p' and A F- e :r. with pu A and A imperatirc. then ther, crists A' such that A'
8s imperative. A C A'. a' :A'. and A' F- v r,

The proof proceeds by induction on the structure of the derivation ofu p - e => ~up'. C'onsider the evaluation
rule ALLOC. The restriction on rule REF ensures that if ref e :r ref, then r is imperative. Consequently. thfe
location typing A" =A'[x r] is imperative since, by supposition, A is imperative, and, by induction. A' is
imperative. The significance of maintaining the imperative invariant on location typings becomes apparent
in the case of the HIND rules. The rule BtND-VAL is handled as sketched above: since vi is a value, it is
non-expansive, consequently A, = A. which suiffices for the proof. The rule BIND-ORD is handled] by ob-serving
that regardless of whether A, is a proper extension of A or not, we tmust have CloseA ,(r,) ? App('loseA(rj).
for if a ty pe variable t occurs freely in A, but not in A. it moust he (by induction by pothbesis) itmperat ive.
and hence is not generalized in AppClose,%(rj) (by definition of AppClose). '[his is sufficient to complete
the proof.

4 Conclusion

We have presented a siniplified proof of thle souttlness of rofte ', type dhiscipline' for ('i)tbti og polyloorphisin1
and mutable references iti ML. The tmain rontributiort is the o'lioination of flt,' unee'd for flth- maxitmal tixftI
point argumient uised by 'rofte [111. T he met hod s ronsi d red here' have' bet' iisitbseqet leoIy e'ripl 'b tv b'.I
Greiner to establish the soundness of the "weak poly niorpliistii type discipline irtiplenif'tttt'l fin flie, St~iai'ir'

NI L of New Jersey comnpiler [1]. Our approach was itnfluenced, by tflie, work of \%right aind l'l,'list'n 1131 who'
pioneered the use of redluct ion sentant ics to prove sou ndlness of ty Ipe aissigonient SN.stettiN.

Several important stutdies of the problem of combining p'olymtorp'hic type- 1ittf'r'eur' and ('mpt'1,1tattd tll
effects (including mutable references) have been conducted in recent years. I'he interestedi readetr is r'f-f'rrt'd
to the work of (Gifford. .Jotivelot and Talpin [6. 9]. Leroy antd %Veiss, [71. %%right [12]. Iloatig, Mlit "h-.I and
Viswanathan [5], and G;reiter [41] for further dletails and references.

'rhe author is grateful to Matt~hias Fel leisen, Andlrew Wright. and Jiohtn (Grt'itner for thettir 'tomintt'lts and'
Suiggest ions.

References

[11 Andrew W. Appel attd David B. MacQueen. Standard ML of New Je'rsey. In .1. Malitszvttski antI
M. Wirsing, editors. Thirdi Int'l1 Symp. on Prog. Lang. lmnplenicntatiout and Logic l'rograrinoinq. pages
1-13., New York. August 1991. Springer- Verlag.

[2] Luis Damas andl Robin Milner. Principal type schemes for ftunctional programs. Itn Ntinth A.1(' Syiu.
po~siur on Principles of Programrming Langutages. pages 207 212. 1982.

[3] Luis Manuel Martins Damas. Trype AIs~signmient in Programming Lautgualfs. PhIl) thIesis. Etldinbuirghi
U'niversity, 1985.0

[4] John Greiner. Standard al weak polymorphism can be sound. 'rechnical Report ('MUT (CS 93-16t0,
School of Computer Science, Carnegie Mellon University, Pittsbtrgh, PA, May 19931.

[51 My Hoang, John Mitchell, and Ramesh Viswanathan. Standartd NIL-NJ weak polytnorphisin and iin-
perative constructs. In Eighth Sympos-itumr on Logic in Compuier Science, 1993.

50

4

[61 Pierre Jouvelot and David Gifford. Algebraic reconstruction of types and effects. In Eighteenth ACM
Symposium on Principles of Programming Languages, pages 303-310, 1991. A

[7] Xavier Leroy and Pierre Weis. Polymorphic type inference and assignment. In Eighteenth A4CM Sym-
posium on Principles of Programming Languages, pages 291-:302. Orlando. FL. January 1991. A(Nt
SIGACT/SIGPLAN.

[8] Robin Milner and Mads Tofte. Co-induction in relational semantics. Technical Report ECS-LF(S-884-
65. Laboratory for the Foundations of Computer Science, Edinburgh University, Edinburgh. October
1988.

[9] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. In Seventh Symposium on Logic
in Computer Science, pages 162-173, 1992.

[10] Mads Tofte. Operational Semantics and Polymorphic Type Inference. PhD thesis, Edinburgh University.
1988. Available as Edinburgh University Laboratory for Foundations of Computer Science Technical
Report ECS-LFCS-88-54.

[11] Mads Tofte. Type inference for polymorphic references. Information and Computation. 89:1--3.1. Noveni-
ber 1990.

[121 Andrew Wright. Typing references by effect inference. In Proceedings of the European Symposium on
Programming, 1992.

1:3] Andrew K. Wright and Matthias Fvlleisen. A syntactic approach to type somidnes.s. I',lchnical Iepri
TR91-160. Department of (Coniputtr Scaience. HIec I'niversity.. July 1991. lb appear. Infor'matiot and 0
Computation.

6

0 0 0 0 0 00* *0

